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Abstract

Four muain results are arrived at in this paper. (1) Closed convex
sets of classical probability funcuions provide 4 representation of belief
that includes the representations provided by Shater probability muass
functions as a special case. (2) The impact of "uncertain evidence”
can be (formally) represented by Dempster conditioning, in Shafer’s
framework. (3) The impact of "uncertain evidence” can be (tormally)
represented in the framework of convex sets ot classical probabilities
by classical conditionalization. (4) The probability intenals that result
from Dempster/Shafer updating on uncertain evidence are included
in (and may be properly included in) the intervals that result from
Bayesian updating on uncertain evidence.
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BAYESIAN AND NON-BAYESIAN EVIDENTIAL MEASURES®

1. Recent work in both vision systems (Garvey, Wesley) and

in knowledge representation (Lowrance, Barnett, Quinlan, Dillard)

has employed an alternative, often referred to as Dempster/Shafer
updating, to classical Bayesian updating of uncertain knowledge.
Various other investigators have gone beyvond classical Bayesian
conditionalization (MYCIN, EMYCIN, DENDRAL, ...) but in a less
systematic manner. It is appropriate to examine tne formal relations

between various Bayesian and non-Bayesian approaches to what has

come to be called evidence theory, in order to explore the question
of whether the new techniques are really more powerful than the old,
and the question of whether, if they are, this increment of power

is bought at too high a price.

2. Classical probability theory supposes (1) that we commence
with known statistial distributions, (2) that these distributions
are such as to give rise to real-valued probabilities, and (3) that
these probabilities can be modified by using Bayes' theorem to
conditionalize on evidence that is taken to be certain. There are
thus three ways to modify the classical theory.

We may dispense with the supposition that we are dealing with
known statistical distributions. The best known advocate of this
gambit was L. J. Savage, who argued that probabilities represent
personal, subjective, opiaiosns, and not obiective distributions

of quantities in the world. This ap
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roach has given rise to Bavesian
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statistics, based on the fact that the opinions of most people are
such that, faced with frequency data, they will converge reasonably
rapidly. Furthermore, in practice, it is common to recognize that
some opinions are better than others, and to use as prior distri-
butions in statistical inference distributions representing the
oplnions of knowledgeable experts. This approach has been incor-
porated in some expert systems, for example, PROSPECTOR. It has
both virtues and limitations. A purely pragmatic virtue is that it
allows us to get on with our business even when we don't have the
knowledge of prior distributions we would lige to have. It has the

practical virtue that the considered opinions of genuinely knowledge~

able experts are formed in response to, and reflect with some degree

of accuracy, relative frequencies in nature. But it has two draw-
backs: it does not incorporate any indication of whether the opinion

is a wild guess, or a considered judgezent based on long experience;

and it calls for expert opinions even in the face of tctal, acknowledged
ignorance.

This suggests the second departure froa the classical picture;
abandoning the assumption that our probabilities are point-valued.
This has recently been hailed as a novel departure (Lowrance, 1982,
p. 21; Garvey, et. al., 1981, p. 319; Dillard, 1982, p. 1l; lowrance
and Garvey, 1982, p.7; Wesley and Hanson, 1932, p. 16; Quinlan, 982,
p. 9). The idea of representing probabilities by intervals is not
new (cf. Kyburg, God, levi, Smaith), and the notion of probabdiliries
that constitute a field ricrer than that of the real n.urbers goes

back even furthar (Keynes, 1921, offers a forzal prilosopghical

“




treatment of such entities; B.0. Koopman, 1941, 1942, offers a
mathematical characterization). Even the standard subjectivistic
or personalist view of probability can be construed in this way;
while each person has a set of real valued probabilities defined
over a given field, a group of people will reflect a set of proba-
bility functions defined over the field. We may quite resonably
focus our attention on the supremum and infimum of these functions
1

evaluated at a member of the field.

In general the representation in terms of intervals seems superior
to the representation in terms of point values. Even in the ideal case,
in which all of our measures are based on statistical inference from
suitably massive quantities of data, it is most natural to construe
these measures as being constrained by intervals. 1In confidence
interval estimation, for example, what we get from our statistics
is a high confidence that a given parameter is contained in a certain
interval. This translates neatly and conveniently into an interval
coastraint. The results of scatistical iaference should reflect
interterminacy or vagueness. What we can properly claim to know is
not that a parameter has a certain value, but that it lies within
certain limits. This limitation of human knowledge should surely
be mirrored in computer based systems.

The third departure from the classical scheme is to consider

alternatives to Bayes' theorem as a way of updating probabilities in’F

!

the light of new evidence. This departure is recent, and was first

stated in Dexzpster, 1967. Dezpster's novel rule of combination, .
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subsequently adopted by Shafer (1976), is often referred to as a
“generalization” of Bayesian inference (Lowrance and Garvey, 1982,

p. 9: "Dempster's rule can be viewed as a direct generalization

of Bayes' rule ..."; Dillard, 1982, p.l; Garvey, et. al., p. 319;
Lowrance 1982, p. 21). This suggests, on the one hand, that Bayes'

rule can be regarded as a special or limiting case of Dempster's rule,
which 1s true, and on the other hand that Dexzpster's rule can be applied
where Bayes' rule cannot, which is false. Dempster himself

recognizes (1967, 1968) that his rule results from the imposition

of additional constraints on the Bayesian analysis (see note %).

One very serious problem with the usual Bayesian approach to
evidential updating is the quantity of information that wmust be
embodied in the probability function covering the field of proposi-
tions with which we are concerned. This may be empirical information
(if the underlying probabilities are thought of as being based on

statistical knowledge), psychological information (if a personalistic

interpretation of probability is adopted), or logical information
(if we interpret probability as degree of confirmation, a la Carnap
(1951)). Suppose we consider a field of propositions based on the
logically independent propositions p ...p : the set of what Carnap
called "state descriptions”™ induced by thzs basis coasists of 2=

atoms, each of which is the conjunction of the n (negated or unnegated)

;- It is obvious that for reasonably large n this assignment of

probabilities presents great difficulties. 32ut cnce we have those 21—
numbers, we'tre itne - we can calluiate all conditiocnzal protabilities as
well as the pro3abilicy of any proposition in the fiz2:id tased on p

‘L.'.P‘{‘,'




Is there a saving in effort if we go to a Dempster/Shafer
System? Using the handy representation in Shafer (13976), we take
3, the universal set, to be the set of all 2" possibilities repre-
sented by the state descriptions, and assign a mass to each subset
of 9. This requires 2 exp 22 assignments! As far as the number
of parameters to be taken account of is concerned, we are exponen-
tially worse off. But if we construe probabilities as intervals, or
represent them by convex sets of simple probability functions, we
are just as badly off. (For an example relating mass assignments
to interval assignments, see table I in the appendix. For the general
equivalence, see theorem 1 below.) Dillard (p. 4) refers to
"computational limitations"” and Lowrance and GCarvey (1982) mention
that with large 2, maintaining the model is "computationally
infeasible.”

In either case, we need to find some systematic and computa-
tionally feasible procedure for obtaining the masses or proba-
bilities we need. Bayesian and non-Bayesian approaches are in
essentially the same difficult situation in this respect, although
there are often plausible ways of systematizing the parameter assignnents

on either view.

3. Whether the representation of our initial «nowladge state is given
bv an assigament of masses to subsets of 7 or bv 3 set of classical

.- . - -

nrobability discrituzions over the atoms 27 7, {f is important that
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inference, which (when possible) yields interval valued estimates

of relative frequencies. But there may also be other ways to obtain
masses or intervals of probability. 1If so, then the deep and difficult
problem arises of how to combine both statistical and non-statistical

. . 2
sources of information.

It has been suggested that Dempster/Shafer updating relieves
us of the necessity of making assumptions about the joint probabilities
of the objects we are concerned about. Thus, Quinlan claims that
INFERNO "makes no assumptions whatever about the joint probability
distributions of pieces of knowledge ..." (Quinlan 1982). Other
writers have made similar claims -- e.g., Wesley and Hanson, 1982, p. 15.
(To make independence assumptions is exactly to make assumptions about
joint probability distributions.)

It is clear that the assignment of masses to subsets of 3 involves
just as much in the way of "assumptions' as the assignment of a priori
probabilities to the corresponding propositions. In view of the
reducibility of the Dempster/Shafer formalism to the formalism provided
by convex sets of classical probability functions (to be shown below),
moreover, we may recapture the assumptions about joint probability

distritutions from the convex Bavesian representation.

4. Cne important novelty of the Dempster/Schafer svsten 1s
its abilitv to handle uncertain evidence But even this 1s not in
izself anti-Zavesian Thers are also 2avesian methods fir handling
uncertain evidence Qne of zhese, used In PESSPICZTIN anD menlicnzd
bv Lowrance (1332, o. 17) i3 knewn ia the philosophical warlid as
Jefirev's ctule ‘Tt is presentcd and Ziscusso? i Teflrs 134630
Tt folisws from 3aves theoren hal
5
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If you adopt a new (coherent) probability function P', there are

essentially no constraints on P'(A). But one can adopt the prin-

ciple that if a shift in probability originates in the assignment

of a new probability to B, that should not affect the conditional

probability of A given B: P(A/B) = P'(A/B). We have learned some-

thing new about B, but we haven't learned anything new about the

bearing of the truth of B on the truth of A.
Given this principle, the response of a shift in the probability
of B from P(B) to P'(B), resulting from new evidence, should pro-

pagate itself according to:

when new evidence leads us to shift our credence in B3 from P(B)

to P'(B), a corresponding shift in probabilitv is induced for every
other proposition in the field: the new probability of a proposition
A is the weighted average of the probability of A, given 3, and the
probability of A given not-B, weighted by the new probabilities of

8 and aot-38.

Lowrance (1982) worries about the prokbl
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move. Having made it, should we then update ths probability of B




the impact of evidence which warrants a shift in the support for B.
It makes no sense to consider updating P'(B) in the light of the

new value of P(A); P'(B) is the source of the updating. No contra-
diction lurks here.

Other Bayesian updating procedures are passible (cf. Hartry
Field, 1978), but it is hard to think of one so simpie and so natural.
This is particularly true in the epistemological framework considered
by Shafer; the weights of the subsets of 2 assigned masses reflect
our a priori intuitions; there is no way in which the values of these
masses, given our observations, can be changed without changing the
model entirely. What impact given evideance has should not also
change according to the evidence we happen to have.

5. . In order to investigate more closely the relations between
the Bayesian and Dempster/Shafer stragegies for updating, it will

be helpful to have several formal results. 1In the present section

we establish the partial equivalence between the assignment of masses
to subsets of 3 (the space of possibilities) and the assignment of

a convex set of simple classical probability functions defined over
the atoams of 3. The equivalence is only partial, since sowe plausible
situations do not have a representation in terms of mass functions.3

(Throughout "&" is to be understood as proper or izmproper inclusion.)




discernment 2. Let Bel(X) be the corresponding belief function --

Bel(X) = m(A). Then there is a closed, convex set of classical

et

AcX

probability functions S  defined over the atoms of 3 such that for

every subset X of 9, Bel(X) = inf P(X)
- - T = PeSp

Proof: Let EP be the set n¢ classical probability functions P defined

on the atoms of 2 such that for every X © 3, Bel(¥) < P(X) <1-Bel(X).

S, is closed, since P(X) = Bel(X), E(X) = 1-Bel(X) is a classical

-

probability function. §P is convex, since for 0 <a <1, gﬁl(ﬁ) + (1'3)L2(§)
lies between Bel(X) and 1-Bel(¥) whenever gl(i) and EZ(X) do. Since

there is a PeS_ such that P(X) = Bel(¥), Bel(¥) > ™ p(x). and 1°f p(y
=2 B0 7 2alA I 2 pest T pesp
> Bel(X) since this inequality holds for every §;§p. B -




Theorem 2

&4 §P is a closed convex set of classical probability functions

defined over the atoms of ¢, and for every A, B © 3, inf P(AUB)

> inf P(A) + inf 2(3) -

n

n

s

P(A~2), then there is a mass function u

defined over the subsets of 2 such that for every X in 9, the

corresponding Bel function satisfies

provf: Since S_ 1s closaed and convex, for every Xed there is
v P

a P<S such that P(¥) = (X).

I
D - P

gg E(E). For every Xei, define Px(¥) ro be

Inf
Bss,

3y Shafer's Theorem 2.1, if ¢ is a frame of discernment then a

[

functioa Bel 27~ 0,1, is'a helief functien if and only if

(L) 32el (&) =0 2@ =0
() Bel () =1 PL(3) = 1

(3) For every positive integer n and every collection A;,...,4

of subsets of =,

3
|
0H L~

Sin:e Shafer's theovrem 2.2 gives an alzorithm to recapture the mass

functicn from the belief funciionm, we need merely extablish (3)
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Suppose (3') fails. Then there is a collection Ay,...,A , of

smallest cardinality n, for which (3') is false. TI.e.,

by the hypothesis of the theorem.

2u((Au.cud 1 Ay) = g*((éln;_\n_)u(ézn%l) Ceeeu(dg_3nag))

By hypothesis, (3') holds for collections of cardinality of (n-1).

(4) Thus P((AnA Yu(Aoma ) (A _nd )) > ” (-1) = P.(N AAD
1 7a = a1 T Icil,...,n-1; ;-:fi o
T 'L+
(3) and P_(A,u...A ) > ) (-1) I+l D*(ﬂ A.)
=l n-1" - .= - —i
= Ictl,...,n-1: 11 —
Lol
Compute [ (_1)L£1+1.E*( A
isI"%
Lc{l,...,g}
We evaluate the sum by cases: ;l? =1, il: > 1 and n ¢ I, and i;? > 1
and n ¢ I.
Iy
I+l
Il =1 2,0 + (-1) =" R 0y 4
= I=l,...,n-1 il =
1'=1
- o+l
= (—-1_);:)'(,'\ i\:D*(‘_'.\).LLD(A)
141, ..., il o= -T -n i<n 1
iy =1L




. L. [1!
‘1) > 1, Is{l,...,0-1}: g -1 LF N A
Lc{l’ L&_ll 1el L
1] > 1, ' {1,...,n-1; I =1I'uin}, I'<{l,...,n-1}
]
_ 1I'I+2
] (-1 B0 Anay)
1'<{1,...,n-1!}
T s}
=) (-1 =it p (N AD
141, ’E} 1l 1
mel, 101
Combining the three terms, we have,
- !
Pe(A V.. UA) 2 Z (-L)[lf"'l P(N A + ¥ (_]_)III""]- P, (N él)
= Is(l,...,n} iel ™= 1e{1,...,n} eIt
i1l > 1 nfl
ITi>1
v ] S NI
I<{1l,...,a} izl —
el
1i>1
= -1+l p (M a)
1={1,...,n- TUoaEs

These two theorems show that the representation of uncertain knowledge

provided by Shafer's probability mass fun
to a representation provided by a convex
functions, and that the representation of
set of classical probabiliry
representation proviied by a protability
convex set of nrobabilicy functions

p (auB) > ? (&) + D (B) - P, {an3).
* - * =

ctions is exactly equivalent

set of classical probability

uncertain knowiedge by a convex

functions is exactly equivalent to a

~ass funzstzion s> lengz as the

...... relation




6. The main theorem of this section gives the relation
between convex Bayesian updating and Dempster/Shafer updating.

To establish the theorem requires two reductions. These are

given by two lemmas. The first provides an algorithm for computing
the result of Dempster/Shafer updating in response to uncertain

evidence; the second does the same thing for Bayesian updating.

Lemma 1 : Let § be a frame of discernment. Let our initial belief
function by Bel,. We obtain new evidence whose impact on the frame

of discernment 9 can be represented by a simple support function

(Shafer 1976, p. 7) Be¥§ whose single focus isigaze. Bel. attributes

mass s to C and mass (l-s) to 2.

Let the foci of Bel. - the subsets A of 9 receiving mass m;(A)>0 -

1

be A, A,,..., A . We can construct a new frame of discernment 8' and
=1’ =2 ’ —n

a new belief function Beli, such that

(a) For every X=3, Bel;(i) = Bell(i)

®Bel )(X) = Beli(XlE), where E€29 , and

(b) For every Xc<3, (Bell

the evidence partially supporting C provides total support for

E. "®" represents the application of Dempster's rule of com-
bination to Bel1 and Belc; Beli(ij) represents Dempster's

rule of conditioning on E - the analog of Bayesian condition-

alization (Shafer 1976 p. 67).

17




Proof: Let e be new to 3, anc for every pe3 generate two new "possibi-

1]

lities” pe and EE' Let §' = {R': 33;9(2f=25 v p! =E§)}' Let E = (2:; 32§5(R'=EE)}'

Since the evidence that supports C is to render E certain, we have C'cE

f.e. C' = [p': 3peClp'=pe)}.

We define Bel,' on the basis of m as follows:

—l 1
Bell' has n foci of the form A, each with mass (l-s)m, (A;), where
m, is the mass function associated with §g}1.

For every i such that éiﬁgf =9, éimE:is to be a focus with mass

§-gl(é1). For convenience we take the first p of the éi to be those for

&

which ArC' = @. Note that p may be O, but cannot be n, else Bel
1= = =1

BelC would be undefined.
The remaining i give rise to the remaining foci. Thesa are of the

form (A, C")J Q.rE), and receive the remaining mass. Since (A, ~CHu
s 1 = S h=

(éi;§)=(éifgw . (AJ:E) is a possibility for i#j, we write

(A PC )4 0E) = ) B(A)s
{i: (éif_')uuini) = (é_ifg')U(;Aiﬁi)}
n
Note that E:gl'((éi“g'),(éifij) = i:é;L gl(éi)'EJ since

these sets have positive mass only if §ﬁ~§j=b.

r—
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The first term yields Z

Since X
fact that pe

the second term yields

We first show that §g}1' is a belief function.
function m'

Obviously its mass
is non-negative for every Ac9', so we need only show that

n'a = 1.
A9’

Summing over the three kinds of foci, we have:

We next show that Bel

1' is equivalent to Bel1 - i.e. that for any
X<, Bel '(X) = Bel (X).

—
Bel "(X) = @' (A) = L @'(A) + o'

= A <X

A2 42

éif\_E_H* ZE ((é_ifg_)u (A;7E))

(4,70 wa D)X

AcX

e e

(X" E)u(XE), AE< X'E if and only if A<X, in view of the
XE(XE), ANES XE AsX
£ é-'ﬂ'E if and only if p£A

and the same holds for X. Thus
3 sez ()
&i:L -
l=isp
15




To evaluate the third term, we claim that (%ng)u(A_if"s_') ¢ X if and only

if é_i:_x_. If éfﬁ, then ;Afg_ < X and é;ng c X and so (éfg),(éfg)c X.

Suppose (éin Cu (éinE) < X. Then _AinE_ cX, éiﬁ'g :&*@_—, and by the prece-
ding argument A <X. Thus the third term yields - s-m, (A))
- = —~ 1 1
p<i<a

Putting the three parts together, we have ge_ll'(&) = BLII(D-

We now show that conditioning on E in the frame of discernzent §'
is equivalent to combining uncertain evidence C with B_e_l.1 in the frame
of discernment 5 according to Dempster's rule of coambination:

For every %3, ( Elle elc)(10= 5_9_1'(51'2)

Y 9—1(%)'—5- + Zal(éi)(l'i)
e sk s
(1) (Bel ®Bel )(X) =
-— 1 - m (A )es
A.nC=9
AnC

(The numerator comprises two sums, since BelC has two foci: C and 2

with masses s and (l-s) respectively.)




E;_ 21'(5) =
ﬁfﬂ

W;P“Mn

sem,(A. ), since only the foci of the form A,rf
- =1l"— -1 -

1 = L

are included in E: A

- (e_\iﬂg)u(ﬁinf_) is not included in E, and

since C'<E, (A, rC')u(A nE) is included in E only if A~C'=@, in

Bence the denominators of (1) and (2) are the same.

It remains to evaluate z _ El'(i)- Coansider foci of the form
A=XnE
Ai‘ iic;ug if and only if Al:z(" so these foci yield mass

z

A, cX
AX 5

=]
~

corresponding to the right hand term in the gumerator of (1).

Consider foci of the form _éinE. All of these are included in

-

EUE; they yield

m' (

_éi_)=

i ~to

'm'r‘ﬂ@

1

So they drop out of the nuxmeraiar of (I).




Finally, consider foci of the form (A.FC (A, n_) We first show

_..

=i
that (A nC'Iu(A 5) X.E if and only if ANC'<S X.  Suppose

"C'< (WE). But C%E, so ANC' =

-~
AnE cEc XE, (A.~C')u(A "E) = XUE.
80F € E < LR, (4,°CT)0(A7E) < KB

We compute the mass in the numerator of (2) due to foci of

this sort. They have mass only when éi1c'#0. And then they have

mass

{j: (A.rC")u(A FE) = (A ~C' )y (—FE)}

each A, such that A ~C' < X contributes s+o. (A ). Their total mass
=i hp S LR

-

is therefore

corresponding to the first tera of the numerator of (1l).

We have therefore shown that (581 838e C)(V)=Eill'(§vg)'




Two remarks on this construction are in order. First, we have
given no rule for finding the "possibility” E. But in general that
should be no problem. Suppose C is the proposition that there is a

squirrel on the roof of the barn. The light is bad, so Bel  assigns a

mass of only .8 to C, and assigns the remaining mass to 8. We take E
in 3' to be the proposition that it seems (.8) to be the case that there
is a squirrel on the roof, for which the evidence is conclusive., The
index 0.8 indicates the force of the seeming, and is reflected in our
assignment of masses in©'. In many situations it seems quite natural
to replace "uncertain evidence” by the "certain” data on which it is
based.

Second, however, whether or not we can alwavs do this is uniapor-
tant for the comparison of Bavesian and Dempster conditioning. We can
regard the introduction of E to be merelv a computational device that
helps us to compare the distribution of masses in 2 according to the

function Bellasel to the corresponding set Bavesian conditional dis-

C

tributions.
We now present an analogous Lemna for Bayesian conditionali-
: - ' . . 4
zation based on Jefifrey's rule for uncertain evidence.
Lemma 2.
Suppose that P_. is our original assignment of probabilities to the

k.fj

field F of propositicons whose basis is a 13,5003 - As a result of

\

stimulation of our sense orzans, or unreliable observation, we shift our

13




probability assigned to A from go(é.) to P (A). By Jeffrey's Rule, for

1

™

X

£,

= FAY. I Ay N
B (X = B(XLa) B (a) + EO(L'A_) B, (8)

Let us add a new atomic proposition e to the basis of F to obtain

the field F', and represent it by E. We Impose the constraint 26 (A E)

= _P_l(é); P' (E) may have any value that strikes our fancy.

—O
We extend 26 so that for any XeF, Eé (x) = go(l(); _l_’o' is fully
equivalent to 30' so far as F is concerned, before we obtain information

about A. Specifically, set

A P (A 1-P (A -k P (A
kng(_); o l( _ !(_) i *-0(—)
B B0 EO@ 1-B (&) 1~ (&)
For XeF', set
Bo(XrE) = By (B) - [k By(Xa) + k' B ()]
34 (XAE) = By(0 - By (XD

Clearly, for XeF,
' = ' AR [} ’_ = .
By (0 = By (XB) + 2] (E) = B (O
We now show that for XcF, probabilities conditional on E are equal

to the probabilities given by Jeffrev's rule: ‘P_lﬁ(_) = _Eé (yg)

B (XE)

2} (8

PL(E) - [k P(X*8) + k' PU(X\A)]

For X<F, B (£'B) =

. 0 )= —
£y ()
P (X&) P (X3 _
= = 28 v 2 (@) = 2(0)
2(8) 2.(3)
AR




The same remarks may be made with regard to this construction
as were made with regard to the previous one. Although we haven't
given a rule for specifying E, it shouldn't be too hard in most circum-
stances to come up with a plausible E; and in any event we can construe
the construction as a computational device to make it easier to compare
Dempster conditioning and Bayesian conditionalization.

The following theorem shows that in the case of certain evidence,
Dempster/Shafer updating yields narrower probability intervals than
does Bayesian updating. The next theorem employes Lemmas 2 and 3
to show that this relation holds in general, and not only when our

evidence is certain.

Theorem 3:
Let 9 be a frame of discernment, Bel a belief function, and §P the

corresponding set of Ba-esian probability functions. Let 3 be

evidence assigned probability 1, or support 1. Then for A=%,

m
r—
15

in

P(A'B) < Bel(AB) < P*(AlB) < sup P(A|B)

inf (
Pc
P ;2 P %2
where g*(éLé) =1 - Bel(éﬂg) is Shafer's plausibility Zunctionx.

™

Proof: (All infima and suprema are taken over Pes )
P
inf(A-B)
inf P(A{B) = —
inf(A°B) + sup(A-B)
sup(A-B)
sup P(A'3) = _
sup(A’B) + inf(aA"B)
| Bel(A.B) - Bel(B)
Bel(A 3) = —
1-Ee1(E)
| P*(A-3) l-Be 1{A B)
By s - -
P*(B) 1-3e1(3)




By computations from table I of the appendix, we obtain:

£
inf P(A|B) =
O A N S e S R S N ST VA SR Le. &
SN IPAe VAL SPYY
Bel(alB) =
/
R R T O SVRAS SN SE VAL OFVRAL. ShaS. P00 SRS SP
LSRR ST TR SURALS SP TR SRS SEVRAL
Pralp) -
2 ) ! ) \ +
O R S AR ST A TR STRALC TR TPYAL. TR VRS Sl b SURL SYRE PPV

From which the inequalities easily follow.

Corollarvy:

. ! - ] : _
(1) iof P(AiB) = Bel(A|B) 1834 R *R %5, = 0
= * ! 4 =
(3) §22‘E(AL§) = Bf(élﬁ) iff 523+£3&+£23& = 0
Theorem 4: If we apply Dempster's rule of combination to any evidence

represented by a separable support function (our initial state need not
be so represented) we obtain constraints more severe than those we get
from Bayesian conditionalization applied to the same initial state.]
Proof: A seperable support function may be represented as the combina-
tion of simple support functions. By Lemma 1, the effect of a simple
support function can be represented by Dempster conditioning. By
Theorem 2, the initial state can be represented bv a closed convex set
of Bavesian probability functions. B8v Lemma ? the effect of uncertain
evidence (as reflected by a sizple support function) caa be represented

by Bavesian conditionalizatior. By Theorem 3 the beliaf intervals re-

to
[35]




sulting from Bayesian conditionalization will include the belief inter-

vals obtained from Dempster conditioning. Therefore the result of
applying Dempster's rule of conditioning will lead to belief intervals
more severely constrained than the convex Bayesian intervals corresponding

to them.

8. Dempster/Shafer evidential updating, we have seen, leads to
more tightly constrained representations of rational belief than

: . .6 . L.

does convex Bayesian updating. It might be thought that this is

a virtue. But whether or not this is a Cood Thing is open to question.

Suppose that D = D ,...,D are alternative decisions open to
- -1 -

you, and that you have a utility function defined over the cross
product of D and the set 8 of possible states. You begin with a belief
function, and you obtain soze evidence. If you ccmbine this evidence
with your initial belief function according to convex Bayesian
conditionalization, vour new beliefs will te characterized by a set

of probability functions Pg. 1If you perform the combination of evidence

according to non-Bayesian procedures, your new beliefs will be character-

ized by a set of probability functions Py that is (in general) a proper

. 2
subset of Pg.

Given any probability function P in either BB of Py» you can

calculate the expected value of each decision: E(Qi,g). Let _s

say that gi is admissible relative to a set of probability functions

just in case there is some probadility function in the se:t according

1

as great as the expeciad

cr

as

to which the expected value of :i is at 1
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value of any other decision.8 Since P 1is included in PB, the admissible

LY

decisions we obtain if we update in a non-Bayesian way are included
among those we obtain if we update in a Bayesian way.

There are three cases to consider. (1) We obtain the sama set
of admissible decisions by either updating procedure. In this case

we have gained nothing. (2) 1If EN leads to a set of admissible

decisicns containing more than one member, then so does PB, and we

must in either case invoke additional constraints in order to generate

a unique decision. (3) If EN leads to a unique admnissible decision

B

and PB does not, we appear to have accomplished something useful

by means of non-Bayesian updating.

But it is open to question whether the added power should be
built into the evidential updating rule, or whether it should appear
as part of a decision procedure that takes us beycnd the evidence.
Many people feel that principles of evidence and principles of decisionm
should be kept distincet.
Consider an urn filled with black and white iron balls, some of which
are magnetized and sowme of which are not. It is easy to imagine that
by extensive sampling, or by word of the manufacturer, our statistical
knowledge about the contents of the urn mayv be as represented in table II
of the appendix, where the set of black balls is represented by A, and
the set of zmagnetized balls is represented by B. Given that this
is our initial state, we may as.. what our attitude should be toward
the proposition that a ball selzectaed from the urn is magnetic, givan
trat it is white.

Cempster conditioning vields the Zdegenerate interval ‘0.8, ¢.5.

Bavesian conditionalization vields the interval [0.5

,




Suppose you are offered a ticket for $ .75 that returns a dollar
if the ball is magnetic. On the view identified with Dempster and
Shafer, it is not only permissible, but, given the usual utilicy
function, mandatory to buy it. On the convex Bayesian view either
accepting or rejecting the offer would be admissible. It is true

that, for all you know, the true expectation is positive; but it is

also true, for all you know, the true expectation is negative. If

every thing you know is true, the expected loss may still be $-.25.

On the other hand, there are cases where Dempster's rule of
combination leads to intuitively appealing results, but the cunvex
Bayes approach does not.9 Suppose you know that 707 of the soft
berries in a certain area are good to eat, and that 60% of the red
berries are good to eat. What are the chances that a soft red berry
is good to eat? The rule yields .42/.54 = .78, which has intuitive
appeal. But the set of distributions compatible with the conditions
of the problem leaves the probability of a soft red berry being good
to eat completely undeterminad: it is the entire interval (0,l1;' It
is possible that 1007 of the soft red berries are good, and it is
possible that 0% of the soft red berries are good.

It is clear that in applying the rule of ccmbination, we are
implicitly constraining the set of (joint) distributions we regard
as possible. This is suggested bv Shafer's requirement that the items
of evidence to be combined 5e "distinct" or "independent”. The most

natural sufficient condition tha:z leads to the same rasul: as Dempster's

[}

rule of cembination is that all zhe probability functicns in our zonvex

set satisfy the three conditicns




(1) P(C) =%

(ii) P(S/GSR) = P(S/C)

(iii) P(S/G&R) = P(S/G).
Condition (i), of course, is our old friernd, the principle of
indifference. Conditions (ii) and (iii) might be called inverse
conditional independence, and it is not hard to imagine that we

have warrent for supposing they are satisfied.

The exact necessary and sufficient conditions for agreement between
the two methods are that our set of probability functions satisfy one
of the two conditions

(iv) P(G&R&S)/P(G&RES) = P(G&R)*P(C&S)/P(G&R) *P(GES)

or (v) P(S/GSR)/P(S/C) = P(G)/P(C) * P(S/G*R)/P(S/C)

I1f our evidence is statistical in character, it clearly behooves
us to unpack the statistical assumptions underlying our employment
of non-Bayesian updating procedures. But what if our evidence is

not statistical in character?

One plausible response is that Dempster's rule of combination
is not designed for all cases in which you have statistical data to
serve as input. Sometimes the masses in the belief function are

determined byv frequencies, and scometimes they are not; only when they

®

are not determined by frequenciss shouli we apply non-3ayesian updating.
It is difficulc to make a cuise azainsz zhis response except by maiing
a case for the claim that all respgonsitle and usa2ful probabilitises,

even very vague one, are tased oo szatistical knowled




we must also face the problem of how to treat evidence which is mixed
-- which contains both statistical components and intuitive components.
While it is a theorem that Dempster combination is both commutative
and associative, and also a theorem that Bayesian combination is both
commutative and associative, it is obviously not the case that a
mixture of Dempster and Bayesian methods need be commutative and

associative.

It should be strongly emphasized that the present arguments are
not intended as arguments in favor of the general applicability of convex
Bayesian conditionalization. Rather, what I have shown is (1) that
the representation of belief states by distributions of masses over
subsets of a set 8 of possibilities is a special case of the convex
Bayesian representation in terms of simple classical probabilities
over the atoms of 9, (2) that the treatments of uncertain evidence
in both Bayvesian and non-Bayesian updating are reducible to the corres-
ponding treatments of certain evidence, and (3) that non-Bayesian
updating yields more determinate belief states as outcomes, but that

the benefits afforded by non-Bayesian updating are limited and questionable.
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Lower Measure
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Table 11
A: white B: magnetic
Mass Frequency
xl 0.2 {0.2,0.4]
X, 0.2 (0.2,0.4°
x3 0.1 f0.1,0.2°
X, 0.2 (0.2,0.5)
X 0.1 (0.4,0.7°
12
X3 0.0 (0.2,0.5]
X14 0.1 {0.4,0.7]
X5 0.0 (0.3,0.5]
%50 0.1 {0.4,0.7;]
X., 0.0 {0.3,0.5!
34
e 1
X151 ¢.0 [0.6,0.8!
X124 0.0 [0.8,0.9]
X134 0.0 {0.6,0.8
r
X534 0.0 {0.6,0.8
3 0.0 {1.0,1.0
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1. This approach is similar to that of Smith (1961). It is also similar
to the approach of Levi (1974, 1981) Good (1962}, and Kyburg (1974), but

as Levi points out in (1981) there are important differences. Levi
represents a credal state by a closed convex set of conditional probability
functions. Since distinct closed convex sets cof conditional probabilicy
functions give rise to the same closed convex sets of simple probability
functions (probabilities conditional on tautological evidence), the two
representations are not equivalent. Smith and Kyburg represent a credal
state by the convex closure of all probabilities consistent with a set of
probability intervals. Shafer, as will be seen, implicitly offers the

same characterization. Dempster (13968) offers a more restricted character-
ization: the convex set representing the credal state is the largest that
both satisfies the interval constraints, and can be obtained from a space
of "simple joint propositioms’ in a certain way. levi has shown (1981,

pp. J38-392) that these additional restriccions are incompatible with
certain natural forms of direct inference of probabilities from known

statistics.

2. In another place I shall argue that we can found all our probabilities
on direct or indirect statistical inference, or on set-theoretical truths.

No other source is needed.

3. An exazple suggested in conversation >y Teddy Seidenfeld is this:
consider 2 compound experiment consiszing of either tossing a fair coin
twice, or drawing a c2in from a bag containing 207 Jdouble headed and

607 doudle tailed coins. The two parts 37 the compound are perfcrmal in
an unxnown ratio. Let A be the event tha:z the first toss lands heads and
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B the event that tRle second toss
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convex set of probability functions is straight-forward, but
Po(A B) = 0.75 <0.9 = P,(A) + P,(3) - P, (AB) =0.4+0.5~0.0
By theorem 2.1 of Shafer 1976, P, is therefore not a belief function.
It is possible to compute a mass function, but the masses assigned to the

union of any three atoms must be negative.

4. This result was stated informally by Levi (1967).

5. Dempster (1967, 1968) was well aware that his rule of combination
led to results stronger than those that would be given by a mere
generalization of Bayesian inference. His reasons for preferring the
rule at which he arrives are essentiallv philosophical: 1in a classical
Bayesian framework, unless you restrict the family of priors, vou doa't
get useful results starting with O information. B2ut in expert systezs,

we have no desire or need to start with zero information.

6. Quinlan's (1982) subtitle suggests the opposite: ~A cautious

approach to uncertain inference."”

7. It is not clear that Shafer's belief functions were intended to bde
used in 3 decision-theoretic context. Even if they were, there would
be serious difficulties standing in the way of such employment. (Ses
Levi (1978, 1980, 1983), and Seidenfeld (1378)). Tor present purposes,

these difficulties need noz zoncern us.

(L)

8. This corresgonds to Levi's notion ¢1221) 27 E-admissibilicy.

(W)
-




9. This elegant and simple example was proposed by Jerry Feldman.
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